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Two-dimensional and quasi-three-dimensional numerical methods have been employed to
simulate the vortex-induced vibrations of a circular cylinder. A low Reynolds number two-
dimensional study at low mass ratio and zero damping revealed lock-in across a large range of
reduced velocities. For the low mass ratio cylinder simulated, the oscillatory frequency was
found to be controlled by the #uid via its added mass. Oscillations far from the body's natural
frequency were observed. The shear stress contributions to the transverse force acting on the
body were very signi"cant and play an important role in the dynamics of low Reynolds number
vortex-induced vibrations. The quasi-three-dimensional method was employed to simulate the
#ow past a long stationary cylinder in shear #ow. Cellular shedding was observed in its wake.
The free transverse #exible vibrations of the same body exhibited signi"cant spanwise correla-
tion over a large length of the body despite the sheared in#ow.
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1. INTRODUCTION

RISER PIPES ARE LONG FLEXIBLE, substantially vertical, circular cylinders used in the o!shore
industry to convey #uids from the sea bed to sea level and vice-versa. For exploration in
ultra deep waters, risers of up to 2000 m length, yielding aspect ratios of order 103, have
been proposed. The Reynolds number associated with these #ows is typically of order 105.

Flexibly supported cylinders may undergo vortex-induced vibrations, through which the
vortex-shedding frequency may lock on to a frequency of vibration of the structure. The
range over which lock-in occurs depends on the vibration amplitude and on the mass and
damping ratios. Flow-induced vibrations are a multiple-degree-of-freedom problem, in
which coupling exists between motions in-line with and transverse to the stream. The
amplitude of transverse oscillations can be of the order of one diameter and therefore
present a potent source of fatigue as well as the possibility of clashing in multiple-cylinder
assemblies.

Risers can be subject to currents with signi"cant shear pro"les, giving rise to large
variations in the vortex-shedding frequency with depth. At any one depth the mode of
vibration closest in frequency to the local natural vortex shedding frequency is the most
likely to be excited. However, the in#uence of other modes of vibration excited by the
current at other depths may result in constructive or destructive interference.

The vortex-induced vibrations of rigid cylinders have recently received renewed atten-
tion. In particular the multiple branching behaviour and hysteresis e!ects observed for the
amplitude of free transverse vibrations of a circular cylinder at low mass and damping ratios
have been the focus of many works (Brika & Laneville, 1995; Khalak & Williamson, 1999;
Newman & Karniadakis, 1995). Due to the high aspect ratios of riser pipes, three-dimen-
sional #ow simulations at realistic Reynolds numbers are still considered infeasible. Lucor
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et al. (2000) have simulated the #ow over a #exible cable of aspect ratio 567, subject to
a sheared current with a peak Reynolds number of 1000, a long way short of the values
required for full riser computations.

Consequently, approximate techniques such as strip theory (Herfjord et al. 1999) have
been used to simulate riser response. The technique employed in the present work is
a quasi-three-dimensional extension of strip theory. A two-dimensional hybrid Euler-
ian/Lagrangian Navier}Stokes code (Graham 1988) is used to simulate the #ow around
several spanwise sections of the riser. These are linked hydrodynamically through a three-
dimensional large-scale vortex lattice representation of the wake (Giannakidis & Graham
1997). A three-dimensional structural dynamics model is coupled to the #uid solver so as to
predict the response.

The work presented here focuses on the #ow-induced transverse vibrations of a rigid
two-dimensional low mass cylinder, elastically mounted with zero damping, so as to excite
a large response, and on the transverse vibrations of a long #exible cylinder in sheared #ow.

2. SIMULATION METHOD

The two-dimensional Navier}Stokes solver and its quasi-three-dimensional extension are
brie#y described below along with the structural dynamics models and the #uid}structure
interaction procedure. For a more detailed account see Willden & Graham (2000).

2.1. FLUID DYNAMICS MODELS

A "rst-order simulation is used to solve the two-dimensional incompressible Navier}Stokes
equations in their velocity}vorticity formulation:
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where u
z

is the spanwise vorticity component. A time-split approach is followed, whereby
the di!usion of vorticity is treated in an Eulerian fashion by modelling the #ow variables
using linear "nite element approximations on an unstructured mesh, and the convection is
handled using a Lagrangian approach that employs discrete point vortices. The velocity
"eld is evaluated through the "nite element solution of the two-dimensional derivative of
the Poisson equation relating velocity and vorticity:

+2u"!$'x. (2)

The Poisson equation relating pressure to velocity (divergence of the momentum equa-
tions), is solved using the "nite element method to yield the pressure components of the
body forces. Those due to viscous shear stresses at the wall, q

w
, are computed from the

vorticity at the wall, according to q
w
(s)"!ku

z
(s), where s de"nes the tangent to the wall.

In three dimensions, multiple two-dimensional computational planes are placed along
the cylinder span. These are linked hydrodynamically using an inviscid unsteady three-
dimensional vortex lattice. The lattice is constructed so as to represent the three-dimen-
sional vorticity "eld. This is done by updating its spanwise vorticity content from the
underlying two-dimensional vorticity "elds. The remaining vorticity components are de-
duced by constructing the lattice so as to be divergence free. The lattice is allowed to
self-convect over the step. Once a part of the lattice passes the downstream extremities of
the computational planes it can no longer be up-dated and is allowed to self-convect and
distort into the far wake. The Biot}Savart law is used to retrieve velocity information from
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the lattice, including Lw/Lz, the spanwise derivative of the spanwise velocity component.
This provides a source term in the sectional solution of equation (2), which allows mass
conservation in three dimensions to be retained. The far-"eld velocity boundary conditions
of the computational planes are modi"ed to include the velocities induced by the lattice.

2.2. STRUCTURAL DYNAMICS MODELS

A spring-mass-damper model is used to simulate the single-degree-of-freedom transverse
vibration of a two-dimensional cylinder. The equation of motion for the cylinder displace-
ment, y, in response to #uid loading, represented by the lift coe$cient C

L
, is given by

m
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where m, f
n

and b are the mass of the cylinder per unit length, the natural frequency of
cylinder vibration and the fraction of critical viscous damping respectively;;, o and D are
the upstream velocity, the density of the #uid and the cylinder diameter, respectively.

The three-dimensional #exible cylinder is modelled as a bending beam under pre-tension
using a linear "nite element implementation of the Bernoulli}Euler beam equations. The
model permits three degrees of freedom at each of the "nite element nodes, axial and
transverse displacements and a rotation about an axis normal to the plane of the displace-
ments. The model incorporates tension, buoyancy and gravity but neglects structural
damping.

The response of the cylinder to the #uid loading is calculated explicitly by both structural
dynamics models. The #uid dynamics is subsequently solved implicitly.

3. RESULTS & DISCUSSION

3.1. TWO-DIMENSIONAL FREE TRANSVERSE VIBRATIONS OF A FLEXIBLY MOUNTED CYLINDER

The response of a circular cylinder free to vibrate in the transverse direction has been
computed over a range of reduced velocities, <

r
";/ f

n
D, from 2)5 to 16. The simulations

were performed on a continuous basis by incrementing the Reynolds number in small
positive steps, starting with the cylinder at rest at Re"50 (<

r
"2)5) and terminating at

Re"320 (<
r
"16). The purpose of this was to ensure that the simulations incorporated any

#uid memory e!ects that may be seen experimentally with increasing #ow speed. The mass
and damping ratios, m*"2m/oD2 and b, of the cylinder are 1 and 0 respectively.

The nondimensional response amplitude, A/D, is shown in Figure 1 over the range of
<

r
simulated. The response amplitude at the start of the simulation, <

r
"2)5, is 0)02D.

Relatively small amplitude oscillations are maintained until <
r
"3)1, after which the

response increases markedly with <
r
. The increasing response amplitude starts to saturate

at <
r
"4)7 at an amplitude of 0)47D. It is not until <

r
"6)1 that the response peaks at

0)50D. This amplitude is approximately maintained until the end of the simulation at
<
r
"16. Although the #ow past a circular cylinder is considered to be three-dimensional

past a Reynolds number of approximately 190, the simulation was continued past this
point, <

r
"9)5, on the premise that lock-in has two-dimensionalizing e!ects.

The oscillatory and vortex-shedding frequencies are de"ned as f
o
and f

v
respectively, with

f
o
"f

v
at lock-in. It is apparent that at this low mass ratio the oscillatory and vortex-

shedding frequencies remain locked-in to one another throughout the <
r
range simulated.

f
o
/f
n

(Figure 1) does not display the step at f
o
/f
n
+1 that characterizes lock-in for moderate

to high mass ratios. Instead, the variation in f
o
is close to linear and varies from 0)29f

n
at the



Figure 1. Amplitude and frequencies of a circular cylinder vibrating freely in the transverse
direction for m*"1, b"0: n, A/D; s, f

o
/ f

n
; e, f

o
/f

N
.
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start of the simulation to 3)45f
n

at its end. This infers that for this very low mass ratio, the
#uid is dominant over the structure in controlling the oscillatory frequency throughout
lock-in. The reverse of this is true where the lock-in step is observed.

The ability of the structure to oscillate far from its natural frequency is better understood
by considering the role of the added mass, m

a
" Ķ /A(2nf

o
)2, where Ķ is the amplitude of the

component of the #uctuating lift force in phase with body displacement. Zero structural
damping infers that Ķ is necessarily the amplitude of the total #uctuating lift force; hence,
¸(t)" Ķ sin(2nf

v
t). This de"nition of m

a
allows equation (3), in the absence of damping,

b"0, and for the case of lock-in, f
o
"f

v
, to be written as
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where y(t)"A sin(2nf
o
t). An e!ective natural frequency of the combined #uid and structure

system, f
N
, may be de"ned according to f 2

N
"f 2

n
/(1#m

a
/m). Non-dimensionalizing f

o
by

f
N

reveals that the body oscillates at or very close to f
N

throughout lock-in (Figure 1).
The ratio m

a
/m describes the relative magnitudes of the #uid and body inertia forces. At

high values of this ratio the body behaves as if it is controlled by a forced motion at the
vortex-shedding frequency. At low values the body oscillates near its natural frequency.
Figure 2 displays m

a
/m against f

o
/f
n

for the simulated data. At the start of the simulation



Figure 2. The added mass, m
a
, of a circular cylinder vibrating freely in the transverse direction for

m*"1, b"0.
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m
a
/m peaks at 9)03. The added mass rapidly decreases with increasing <

r
until it reaches

zero, somewhere between <
r
"5)5 and 5)6, at which point the body is free to oscillate at its

natural frequency, f
o
/f
n
"1. Past this point, the added mass becomes negative as the lift

force moves out of phase with the displacement. As <
r

is increased still further, m
a
/m

asymptotes to a value close to !1; the minimum value achieved is !0)91 at <
r
"16.

Figure 3 depicts a selection of vortex particle images of the wake of the oscillating
cylinder along with corresponding time traces of response, lift and drag coe$cients, y/D,
C

L
and C

D
, respectively. Also shown are time traces, over di!erent time periods for clarity,

of the contributions to C
L

by pressure forces and shear stresses, C
Lp

and C
Lf

respectively.
This "gure depicts simulations at <

r
"3)9, where C

L
(t) is in phase with y(t), at <

r
"5)5,

approximately at the phase change, and at <
r
"10.0, where C

L
(t) is in anti-phase with y(t).

The shedding in all cases is of the 2S type. The increasing oscillatory amplitude with <
r
is

responsible for a breakdown in the stability of the von KaH rmaH n street due to larger
transverse separations between vortices. Consequently the staggered vortex wake has to
readjust itself in the middle-wake region, by rolling up and coalescing like signed pairs of
vortices to form larger vortex structures, as depicted in the wake images for <

r
"5)5 and

10)0. The time traces for these two cases show slight modulations for which the frequencies
are given by the di!erences in the frequencies of the near- and far-wake vortex structures.

The in-phase and anti-phase nature of y/D and C
L

are best observed for cases <
r
"3)9

and 10)0, respectively. Less clear is the relative phase of the traces for<
r
"5)5 which is made

more complex by higher frequencies. A small phase di!erence between the pressure and
shear stress contributions to C

L
can be observed for <

r
"3)9. Both are approximately in

phase with y/D. For the case just prior to the phase change, <
r
"5)5, there is a phase

di!erence of approximately 1803 between C
Lp

and C
Lf

; C
Lp

is in anti-phase with the
displacement whilst C

Lf
remains in phase. This phase di!erence between C

Lp
and

C
Lf

persists until the end of the simulation at <
r
"16, as shown in the traces for <

r
"10)0.

Much of this information is summarized by Figure 4. The high relative magnitude of
C

Lf
with respect to C

Lp
, in particular before the phase change ( f

o
"f

n
), is evident. The

pressure contribution on its own changes phase with respect to the response between
<
r
"4)8 and 4)9. The peak in the overall lift coe$cient occurs at<

r
"3)9 some way short of



Figure 3. Particle images of the wake, response, lift and drag coe$cient (y/D, C
L

and C
D
) histories

of a circular cylinder vibrating freely in the transverse direction; m*"1, b"0, at reduced velocities,
(a, b, c) <

r
"3)9, 5)5 and 10)0.
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the <
r

of the maximum response amplitude. This is in contrast to the higher Reynolds
number observations of Khalak & Williamson (1999) who observed a peak in C

L 3.4
just

prior to the maximum response. The high relative magnitude of C
Lf

at these low Reynolds
numbers undoubtedly plays a role in these discrepancies.



Figure 4. Variation of the component of the lift coe$cient, in phase with body displacement, and its
constituent parts with oscillatory frequency, for a circular cylinder vibrating freely in the transverse

direction, m*"1, b"0: n, C
L
; s, C

Lp
; e, C

Lf
.

Figure 5. Variation of the constituent parts of the component of the lift coe$cient in phase with
body velocity with oscillatory frequency for a circular cylinder vibrating freely in the transverse

direction, m*"1, b"0: s, C
Lp

; e, C
Lf

.
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Although C
L

must remain entirely in phase or out of phase with y/D since b"0, the
contributions to C

L
from C

Lp
and C

Lf
may have components, of equal and opposite sign, in

phase with the body velocity (Figure 5). The component of C
Lp

in phase with velocity
provides an excitation force as it remains positive throughout. This is balanced by the
equivalent component of C

Lf
which acts as hydrodynamic damping. The magnitudes of

these components are not insigni"cant in comparison to C
L
. The extraordinarily large shear

force would appear to be constraining the motion that would otherwise be excited by the
considerable component of C

Lp
in phase with the body velocity.

3.2. FREE TRANSVERSE VIBRATIONS OF A THREE-DIMENSIONAL FLEXIBLE CYLINDER

The quasi-three-dimensional solver has been used to simulate the #ow past a rigid
cylinder, length 25 m and aspect ratio 100, subject to a sheared in#ow. The in#ow
Reynolds number is linearly sheared from 200 at its top end to 100 at its bottom end.
A particle and lattice image of the wake is shown in Figure 6. Although this "gure yields
limited insight into the structure of the wake, it demonstrates how the computational
method works. Nine equally spaced computational planes are depicted in this "gure, each
separated by 10D.



Figure 6. Particle and lattice visualisation of the #ow behind a circular cylinder subjected to
a sheared onset #ow.
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Figure 7 displays the spanwise Stouhal number variation as well as the time evolution of
the lift coe$cient acting on the cylinder. The Strouhal number varies from 0)156 at the low
Reynolds number end to 0)185 at the upper end. The time evolution of C

L
shows signs of

cellular shedding, as has been widely reported for sheared #ow. However, one must be
cautious in identifying dislocations between such cells, given the coarse nature of the
spanwise resolution.

The cylinder was then released and allowed to oscillate freely in the transverse direction,
with its ends pinned. The sti!ness and applied axial tension are 19)8 MN m2 and 14)8 MN,
respectively. The tension was set deliberately high in order that the fundamental mode be
excited. Buoyancy and gravity forces are ignored, and structural damping is set to zero. The
mass ratio, m*"2m/oD2, is 4)26, where m is the mass per unit length of the body.

The response (Figure 8) is close to that of the fundamental mode, except that the peak
displacement, 0)36D, is found towards the lower Reynolds number end at z/D"44. The
frequency of oscillation, f

o
, is 1)05f

n
, where f

n
is the frequency of the fundamental mode in

a vacuum. In contrast with the lower mass ratio case simulated in two dimensions, the
structure is dominant in modifying the shedding frequency towards the natural frequency.
As indicated by Figure 9, the shedding frequencies at the end points remain relatively
unperturbed by the oscillation, whereas those in between are signi"cantly modi"ed.

The lift coe$cient evolution (Figure 9) shows signi"cant spanwise correlation between
z/D"25 and 75, over which the shedding and oscillatory frequencies remain locked. At the
location of the peak response, z/D"44, the C

L
evolution shows an abrupt phase change.



Figure 7. Spanwise Strouhal number, S, variation and time evolution of the lift coe$cient, C
L
,

acting on a stationary circular cylinder subjected to a sheared onset #ow.

Figure 8. Response envelope of a circular cylinder subjected to a sheared onset #ow, vibrating
freely in the transverse direction.
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On the lower <
r

side, z/D(44, C
L

and y/D remain in phase; towards the higher <
r

end, z/D'44, C
L

and y/D are in anti-phase. This phase change is not altogether unsurpris-
ing as to some degree it mimics the changes one would expect from a variable reduced
velocity.

4. CONCLUSIONS

The low Reynolds number two-dimensional simulations exhibited lock-in throughout. The
ability of the #uid at low mass ratios to dominate over the structure in oscillating the body
far from its natural frequency was observed. This was facilitated by considerable changes to
the added mass. Very high shear stress contributions to the lift force were observed, which



Figure 9. Spanwise Strouhal number, S, variation and time evolution of the lift coe$cient, C
L
,

acting on a transversely oscillating #exible circular cylinder subjected to a sheared onset #ow.
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undoubtedly play a signi"cant role in the dynamics of the vortex excited cylinder at low
Reynolds numbers.

Cellular shedding in the wake of the three-dimensional circular cylinder, when subject to
a sheared onset #ow, was observed. Despite the shear, the transverse vibrations of the
cylinder were seen to correlate the vortex shedding over a substantial proportion of the
body's length whilst towards its ends little synchronization was observed.
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